Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosurg ; 140(2): 338-349, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37542437

RESUMEN

OBJECTIVE: The objective of this study was to identify baseline clinical and radiological characteristics of brain metastases (BMs) associated with a higher probability of lesion-specific progression-free survival (PFS-L) after laser interstitial thermal therapy (LITT). METHODS: A total of 47 lesions in 42 patients with BMs treated with LITT were retrospectively examined, including newly diagnosed BM, suspected recurrent BM, and suspected radiation necrosis. The association of baseline clinical and radiological features with PFS-L was assessed using survival analyses. Radiological features included lesion size measurements, diffusion and perfusion metrics, and sphericity, which is a radiomic feature ranging from 1 (perfect sphere) to 0. RESULTS: The probability of PFS-L for the entire cohort was 88.0% at 3 months, 70.6% at 6 months, 67.4% at 1 and 2 years, and 62.2% at 3 years. For lesions progressing after LITT (n = 13), the median time to progression was 3.9 months, and most lesions (n = 11) progressed within 6 months after LITT. In lesions showing response to LITT (n = 17), the median time to response was 12.1 months. All 3 newly diagnosed BMs showed a long-term response. The mean (± SD) follow-up duration for all censored lesions (n = 34) was 20.7 ± 19.4 months (range 12 days to 6.1 years). The mean pretreatment enhancing volume was 2.68 cm3 and the mean sphericity was 0.70. Pretreatment small enhancing volume (p = 0.003) and high sphericity (p = 0.024) computed from lesion segmentation predicted a longer PFS-L after LITT. Lesions meeting optimal cutoffs of either enhancing volume < 2.5 cm3 (adjusted p = 0.004) or sphericity ≥ 0.705 (adjusted p = 0.019) had longer PFS-L, and their probability of PFS-L was 86.8% at 3 years. Lesions meeting both cutoffs showed a cumulative benefit (p < 0.0001), with a 100% probability of PFS-L at 3 years, which was unchanged at the end of follow-up (4.1 years). Manually computed estimates of lesion size (maximal axial diameter, p = 0.011) and sphericity (p = 0.043) were also predictors of PFS-L. Optimal cutoffs of diameter < 2 cm (adjusted p = 0.035) or manual sphericity ≥ 0.91 (adjusted p = 0.092) identified lesions with longer PFS-L, and lesions meeting both cutoffs showed a cumulative benefit (p = 0.0023). Baseline diffusion imaging did not predict PFS-L. A subset of lesions (n = 7) with highly perfused hotspots had worse PFS-L (adjusted p = 0.010), but perfusion signal contamination from vessels and cortex and underlying size differences were possible confounders. CONCLUSIONS: Small size and high sphericity are ideal baseline features for lesions considered for LITT treatment, with a cumulative PFS-L benefit when both features are present, that could aid patient selection.


Asunto(s)
Neoplasias Encefálicas , Terapia por Láser , Humanos , Terapia por Láser/métodos , Estudios Retrospectivos , Pronóstico , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Rayos Láser
2.
J Neurooncol ; 163(2): 417-427, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37294422

RESUMEN

PURPOSE: There is limited knowledge about the associations between sodium and proton MRI measurements in brain tumors. The purpose of this study was to quantify intra- and intertumoral correlations between sodium, diffusion, and perfusion MRI in human gliomas. METHODS: Twenty glioma patients were prospectively studied on a 3T MRI system with multinuclear capabilities. Three mutually exclusive tumor volumes of interest (VOIs) were segmented: contrast-enhancing tumor (CET), T2/FLAIR hyperintense non-enhancing tumor (NET), and necrosis. Median and voxel-wise associations between apparent diffusion coefficient (ADC), normalized relative cerebral blood volume (nrCBV), and normalized sodium measurements were quantified for each VOI. RESULTS: Both relative sodium concentration and ADC were significantly higher in areas of necrosis compared to NET (P = 0.003 and P = 0.008, respectively) and CET (P = 0.02 and P = 0.02). Sodium concentration was higher in CET compared to NET (P = 0.04). Sodium and ADC were higher in treated compared to treatment-naïve gliomas within NET (P = 0.006 and P = 0.01, respectively), and ADC was elevated in CET (P = 0.03). Median ADC and sodium concentration were positively correlated across patients in NET (r = 0.77, P < 0.0001) and CET (r = 0.84, P < 0.0001), but not in areas of necrosis (r = 0.45, P = 0.12). Median nrCBV and sodium concentration were negatively correlated across patients in areas of NET (r=-0.63, P = 0.003). Similar associations were observed when examining voxel-wise correlations within VOIs. CONCLUSION: Sodium MRI is positively correlated with proton diffusion MRI measurements in gliomas, likely reflecting extracellular water. Unique areas of multinuclear MRI contrast may be useful in future studies to understand the chemistry of the tumor microenvironment.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Protones , Imagen por Resonancia Magnética , Glioma/diagnóstico por imagen , Glioma/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Imagen de Difusión por Resonancia Magnética , Perfusión , Necrosis , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...